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Ray Solomonoff, the first inventor of some of the fundamen-
tal ideas of Algorithmic Information Theory, died in December, 
2009. His original ideas helped start the thriving research areas 
of algorithmic information theory and algorithmic inductive in-
ference. His scientific legacy is enduring and important. He was 
also a highly original, colorful personality, warmly 
remembered by everybody whose life he touched. 
We outline his contributions, placing it into its his-
torical context, and the context of other research in 
algorithmic information theory. 

1. Introduction

Raymond J. Solomonoff died on December 7, 2009, 
in Cambridge, Massachusetts. He was the first in-
ventor of some of the fundamental ideas of Algo-
rithmic Information Theory, which deals with the 
shortest effective description length of objects and 
is commonly designated by the term “Kolmogorov 
complexity.“ 

In the 1950s Solomonoff was one of the first re-
searchers to introduce probabilistic grammars and 
the associated languages. He championed proba-
bilistic methods in Artificial Intelligence (AI) when these were 
 unfashionable there, and treated questions of machine learning 
early on. But his greatest contribution is the creation of Algorith-
mic Information Theory. 

In November 1960, Solomonoff published the report [14] present-
ing the basic ideas of Algorithmic Information Theory as a means 
to overcome serious problems associated with the application of 
Bayes’s rule in statistics. His findings (in particular, the invariance 
theorem) were mentioned prominently in April 1961 in Minsky’s 
symposium report [8]. (Andrei N. Kolmogorov, the great Russian 
mathematician, started lecturing on description complexity in 
Moscow seminars about the same time.) 

Solomonoff’s objective was to formulate a completely general 
theory of inductive reasoning that would overcome shortcomings 
in Carnap’s [1]. Following some more technical reports, in a long 
journal paper in two parts he introduced “Kolmogorov” complex-
ity as an auxiliary concept to obtain a universal a priori probability 
and proved the invariance theorem that, in various versions, is 
one of the characteristic elements of Algorithmic Information The-
ory [16,17]. The mathematical setting of these ideas is described in 
some detail below. 

Solomonoff’s work has led to a novel approach in statistics 
leading to applicable inference procedures such as the minimal 
description length principle. Jorma J. Rissanen, credited with 
the latter, relates that his invention is based on  Solomonoff’s 

work with the idea of applying it to classical statistical infer-
ence [10,11]. 

Since Solomonoff is the first inventor of Algorithmic Informa-
tion Theory, one can raise the question whether we ought to talk 

about “Solomonoff complexity”. However, the 
name “Kolmogorov complexity” for shortest 
effective description length has become well 
entrenched and is commonly understood. Sol-
omonoff’s publications apparently received 
little attention until Kolmogorov started to 
refer to them from 1968 onward. Says Kol-
mogorov, “I came to similar conclusions [as 
Solomonoff], before becoming aware of Solo-
monoff’s work, in 1963–1964” and “The basic 
discovery, which I have accomplished inde-
pendently from and simultaneously with R. 
Solomonoff, lies in the fact that the theory of 
algorithms enables us to eliminate this arbi-
trariness by the determination of a ‘complexi-
ty’ which is almost invariant (the replacement 
of one method by another leads only to the 
 addition of a bounded term)” 

Solomonoff’s early papers contain in veiled form suggestions 
about randomness of finite strings, incomputability of Kol-
mogorov complexity, computability of approximations to the 
Kolmogorov complexity, and resource-bounded Kolmogorov 
complexity. 

Kolmogorov’s later introduction of complexity was motivated by 
information theory and problems of randomness. Solomonoff in-
troduced algorithmic complexity independently and earlier and 
for a different reason: inductive reasoning. Universal a priori 
probability, in the sense of a single prior probability that can be 
substituted for each actual prior probability in Bayes’s rule was 
invented by Solomonoff with Kolmogorov complexity as a side 
product, several years before anybody else did. 

A third inventor is Gregory J. Chaitin, who formulated a proper 
definition of Kolmogorov complexity at the end of his paper [2]. 

For a more formal and more extensive study of most topics treated 
in this paper, we recommend [7]. 

2. The Inventor

Ray Solomonoff published a scientific autobiography up to 1997 
as [23]. He was born on July 25, 1926, in Cleveland, Ohio, in the 
United States. He studied physics during 1946-1950 at the Univer-
sity of Chicago (he recalls the lectures of E. Fermi). He obtained 
a Ph.B. (bachelor of philosophy) and a M.Sc. in physics. He was 
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already interested in problems of inductive inference and ex-
changed viewpoints with the resident philosopher of science at 
the University of Chicago, Rudolf Carnap, who taught an influen-
tial course in probability theory. 

From 1951-1958 he held half-time jobs in the electronics industry 
doing math and physics and designing analog computers. 

In 1956, Solomonoff was one of the 10 or so attendees of the Dart-
mouth Summer Research Conference on Artificial Intelligence, at 
Dartmouth College in Hanover, New Hampshire, organized by  
M. Minsky, J. McCarthy and C.E. Shannon, and in fact stayed on to 
spend the whole summer there. (This meeting gave AI its name.) 
There Solomonoff wrote a memo on inductive inference. 

McCarthy had the idea that given every mathematical problem, it 
could be brought into the form of “given a machine and a desired 
output, find an input from which the machine computes that out-
put.” Solomonoff suggested that there was a class of problems that 
was not of that form: “given an initial segment of a sequence, predict 
its continuation.” McCarthy then thought that if one saw a machine 
producing the initial segment, and then continuing past that point, 
would one not think that the continuation was a reasonable extrapo-
lation? With that the idea got stuck, and the participants left it at that. 

Also in 1956, Ray circulated a manuscript of “An Inductive Infer-
ence Machine” at the Dartmouth Summer Research Conference on 
Artificial Intelligence, and in 1957 he presented a paper with the 
same name at the IRE Convention, Section on Information Theo-
ry, a forerunner of the IEEE Symposium on Information Theory. 
This partially used Chomsky’s paper [3] read at a Symposium on 
Information Theory held at MIT in September 1956. “An Induc-
tive Inference Machine” already stressed training sequences and 
using previous solutions in solving more complex problems. In 
about 1958 he left his half-time position in industry and joined 
Zator Company full time, a small research outfit located in some 
rooms at 140 1/2 Mount Auburn Street, Cambridge, Massachu-
setts, which had been founded by Calvin Mooers around 1954 for 
the purpose of developing information retrieval technology. Float-
ing mainly on military funding, Zator Co. was a research front 
organization, employing Mooers, Solomonoff, Mooers’s wife, and 
a secretary, as well as at various times visitors such as Marvin 
Minsky. It changed its name to the more martial sounding Rock-
ford Research (Rockford, Illinois, was a place where Mooers had 
lived) around 1962. In 1968, the US Government reacted to pub-
lic pressure (related to the Vietnam War) by abolishing defense 
funding of civil research, and Rockford foundered. Being out of 
a job,  Solomonoff left and founded his own (one-man) company, 
Oxbridge Research, in Cambridge in 1970, and has been there ever 
since, apart from spending nine months as research associate at 
MIT’s Artificial Intelligence Laboratory, the academic year 1990-
1991 at the University of Saarland, Saarbruecken, Germany, and a 
more recent sabbatical at IDSIA, Lugano, Switzerland. 

It is unusual to find a productive major scientist that is not regu-
larly employed at all. But from all the elder people (not only sci-
entists) we know, Ray Solomonoff was the happiest, the most in-
quisitive, and the most satisfied. He continued publishing papers 
right up to his death at 83. 

In 1960 Solomonoff published [14], in which he gave an outline 
of a notion of universal a priori probability and how to use it in 

inductive reasoning (rather, prediction) according to Bayes’s rule. 
This was sent out to all contractors of the Air Force who were even 
vaguely interested in this subject. In [16,17], Solomonoff developed 
these ideas further and defined the notion of enumeration, a precur-
sor of monotone machines, and a notion of universal a priori prob-
ability based on his variant of the universal monotone machine. 
In this way, it came about that the original incentive to develop a 
theory of algorithmic information content of individual objects was 
Solomonoff’s invention of a universal a priori probability that can 
be used as a priori probability in applying Bayes’s rule. 

Solomonoff’s first approach was based on Turing machines with 
markers that delimit the input. This led to awkward convergence 
problems with which he tried to deal in an ad-hoc manner. The 
young Leonid A. Levin (who in [27] developed his own mathemat-
ical framework, which became the source of a beautiful theory of 
randomness), was told by Kolmogorov about Solmonoff’s work. 
He added a reference to it, but had in fact a hard time digesting 
the informalities; later though, he came to appreciate the wealth of 
ideas in [16]. Solomonoff welcomed Levin’s new formalism with 
one exception: it bothered him that the universal a priori probabil-
ity for prediction is a semimeasure but not a measure (see below). 
He continued to advocate a normalization operation keeping up a 
long technical argument with Levin and Solovay. 

In 2003 he was the first recipient of the Kolmogorov Award by 
The Computer Learning Research Center at the Royal Holloway, 
University of London, where he gave the inaugural Kolmogorov 
Lecture. Solomonoff was a visiting Professor at the CLRC. A list of 
his publications (published and unpublished) is at http://world.
std.com/~rjs/pubs.html. 

3. The Formula

Solomonoff’s main contribution is best explained if we start with 
his inference formula not as he first conceived it, but in the cleaner 
form as it is known today, based on Levin’s definition of apriori 
probability [27]. Let T be a computing device, say a Turing machine. 
We assume that it has some, infinitely expandable, internal memory 
(say, some tapes of the Turing machine). At each step, it may or may 
not ask for some additional input symbol from the alphabet 50, 16, 
and may or may not output some symbol from some finite alpha-
bet S. For a finite or infinite binary string p, let T 1p 2  be the (finite 
or infinite) output sequence emitted while not reading beyond the 
end of p. Consider the experiment in which the input is an infinite 
sequence of tosses of an independent unbiased coin. For a finite 
sequence x5 x1 cxn written in the alphabet S, let MT 1x 2  be the 
probability that the sequence outputted in this experiment begins 
with x. More formally, let T21 1x 2  be the set of all those binary se-
quences p that the output string T 1p 2  contains x as a prefix, while 
if p r is a proper prefix of p then T 1p r 2  does not output x yet. Then 

 MT 1x 2 5 a
p[T211x2

22|p|,  (1)

where |p| is the length of the binary string p. The quantity MT 1x 2  
can be considered the algorithmic probability of the finite sequence 
x. It depends, of course, on the choice of machine T, but if T is a 
universal machine of the type called optimal then this dependence 
is only minor. Indeed, for an optimal machine U, for all machines 
T there is a finite binary rT with the property T 1p 2 5U 1rTp 2  for all 
p. This implies MU 1x 2 $ 22|rT|MT 1x 2  for all x. Let us fix therefore 
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such an optimal machine U and write M 1x 2 5MU 1x 2 . This is (the 
best-known version of) Solomonoff’s apriori probability. 

Now, Solomonoff’s prediction formula can be stated very simply. 
Given a sequence x of experimental results, the formula 

 
M 1xy 2

M 1x 2
 (2)

assigns a probability to the event that x will be continued by a 
sequence (or even just a symbol) y. In what follows we will have 
opportunity to appreciate the theoretical attractiveness of the for-
mula: its prediction power, and its combination of a number of 
deep principles. But let us level with the reader: it is incomput-
able, so it can serve only as an ideal embodiment of some prin-
ciples guiding practical prediction. (Even the apriori probability 
M 1x 2  by itself is incomputable, but it is at least approximable by a 
monotonic sequence from below.) 

4. First, Informal Ideas

Scientific ideas of great originality, when they occur the first time, 
rarely have the clean, simple form that they acquire later. Nowa-
days one introduces description complexity (“Kolmogorov” com-
plexity) by a simple definition referring to Turing machines. Then 
one proceeds to a short proof of the existence of an optimal ma-
chine, further to some simple upper and lower bounds relating it 
to probability and information. This a highly effective, formally 
impeccable way to introduce an obviously interesting concept. 

Inductive inference is a harder, more controversial issue than infor-
mation and randomness, but this is the problem that Solomonoff 
started with! In the first papers, it is easy to miss the formal defini-
tion of complexity since he uses it only as an auxiliary quantity; 
but he did prove the machine independence of the length of mini-
mal codes. 

The first written report seems to be [14]. It cites only the book [1] 
of Carnap, whose courses Solomonoff attended. And Carnap may 
indeed have provided the inspiration for a probability based on 
pure logical considerations. The technical report form allowed the 
gradual, informal development of ideas. 

The work starts with confining the considerations to one particular 
formal representation of the general inference problem: predicting 
the continuations of a finite sequence of characters. Without mak-
ing any explicit references, it sets out to combine two well-studied 
principles of inductive inference: Bayesian statistics and the prin-
ciple that came to be known (with whatever historic justification) 
as “Occam’s Razor”. A radical version of this principle says that 
we should look for a shortest explanation of the experimental 
results and use this explanation for prediction of future experi-
ments. In the context of prediction, it will be therefore often justi-
fied to call descriptions explanations. 

Here is the second paragraph of the introduction: 

Consider a very long sequence of symbols – e.g., a passage 
of English text, or a long mathematical derivation. We shall 
consider such a sequence of symbols to be “simple” and 
have high a priori probability, if there exists a very brief 
description of this sequence – using, of course, some sort 
of stipulated description method. More exactly, if we use 

only the symbols 0 and 1 to express our description, we will 
assign the probability 22n to a sequence of symbols, if its 
shortest possible binary description contains n digits.

The next paragraph already makes clear that what he will mean by 
a short “description” of a string x: a program of a general-purpose 
computer that outputs x. 

The combination of these three ingredients: simplicity, apriori proba-
bility, universal computer turned out to have explosive power, form-
ing the start of a theory that is far from having exhausted its poten-
tial now, 50 years later. This was greatly helped by Kolmogorov’s 
independent discovery that related them explicitly to two addi-
tional classical concepts of science: randomness and information. 

There is another classical principle of assigning apriori prob-
abilities that has been given a new interpretation by Solomonoff’s 
approach: Laplace’s principle of indifference. This says that in the 
absence of any information allowing to prefer one alternative to 
another, all alternatives should be assigned the same probability. 
This principle has often been criticized, and it is indeed not easy 
to delineate its reasonable range of applicability, beyond the cases 
of obvious symmetry. Now in Solomonoff’s theory, Laplace’s prin-
ciple can be seen revived in the following sense: if an outcome has 
several possible formal descriptions (interpreted by the universal 
monotonic machine), then all descriptions of the same length are as-
signed the same probability. 

The rest of the report [14] has a groping, gradual nature as it is try-
ing to find the appropriate formula for apriori probability based 
on simplicity of descriptions. 

The problems it deals with are quite technical in nature, that is it 
is (even) less easy to justify the choices made for their solution on 
a philosophical basis. As a matter of fact, Solomonoff later uses 
(normalized versions of) (2) instead of the formulas of these early 
papers. Here are the problems: 

1) Machine dependence. This is the objection most successfully 
handled in the paper. 

2) If we assign weight 22n to binary strings of length n then the 
sum of the weights of all binary strings is infinite. The problem 
is dealt with in an ad-hoc manner in the report, by assigning a 
factor 112 P 2 k to strings of length k. Later papers, in particular 
Solomonoff’s first published paper [16] on the subject, solve it 
more satisfactorily by using some version of definition (1): on 
monotone machines, the convergence problem disappears. 

3) We should be able to get arbitrary conditional probabilities in our 
Bayesian inference, but probability based on shortest descrip-
tion leads to probabilities that are powers of two. Formula (2) 
solves this problem as simply as it solved the previous one, but 
the first publication [16] did not abandon the ad-hoc approach 
of the technical report yet either, summing up probabilities for 
all continuations of a certain length (and taking the limit). 

4) There are principles of induction suggesting that not only mini-
mal descriptions (explanations) should be considered. Formula 
(2) incorporates all descriptions in a natural manner. Again, 
the ad-hoc approach, extending the sum over all descriptions 
(weighted as above), still is also offered in [16]. 
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It remained for later researchers (Kolmogorov, Levin) to discov-
er that – in certain models (though not on monotonic comput-
ers) even to within an additive constant – asymptotically, the 
 logarithm of the apriori probability obtained this way is the same 
as the length of the shortest description. Thus, a rule that bases 
prediction on shortest explanations is not too different from a rule 
using the prediction fitting “most” explanations. In terms of the 
monotone machines, this relation can be stated as follows. For a 
string x, let Km 1x 2  be the length of the shortest binary string that 
causes the fixed optimal monotonic machine to output some con-
tinuation of x. Then 

 Km 1x 2 2 2logKm 1x 2 # 2 logM 1x 2 # Km 1x 2 . (3)

The paper [16] offers yet another definition of apriori prob-
ability, based on a combination of all possible computable con-
ditional probabilities. The suggestion is tentative and overly 
complex, but its idea has been vindicated by Levin’s theorem, 
in [27], showing that the distribution M 1x 2  dominates all other 
“lower semicomputable semimeasures” on the set of infinite se-
quences. (Levin did not invent the universal semimeasure M 1x 2  
as response to Solomoff’s work, but rather as a natural techni-
cal framework for treating the properties of complexity and 
randomness.) Here, the semimeasure property requires, for all 
x, the inequalities M 1x 2 $ g b[S M 1xb 2 , while M 1L 2 # 1 for the 
empty string L. Lower semicomputability requires that M 1x 2  is 
the limit of an increasing sequence of functions that is comput-
able in a uniform way. A computable measure is certainly also 
a lower semicomputable semimeasure. The dominance property 
distinguishes Solomonoff’s apriori probability among all lower 
semicomputable semimeasures. Levin’s observation is crucial for 
all later theorems proved about apriori probability; Solomonoff 
made important use of it later. 

The paper [17] considers some simple applications of the predic-
tion formulas, for the case when the sequence to be predicted 
is coming from tossing a (possibly biased) coin, and when it is 
 coming from a stochastic context-free grammar. There are some 
computations, but no rigorous results. 

5. The Prediction Theorem

Solomonoff wrote an important paper [18] that is completely tra-
ditional in the sense of having a non-trivial theorem with a proof. 
The result serves as a justification of the prediction formula (2). 
What kind of justifications are possible here? Clearly, not all se-
quences can be predicted successfully, no matter what method is 
suggested. The two possibilities are: 

1) Restrict the kind of sources from which the sequences may 
be coming, to a still sufficiently wide class. 

2) Show that in an appropriate sense, your method is (nearly) as 
good as any other method, in some wide class of methods.

There is a wealth of research on inference methods considering a 
combination of both kinds of restriction simultaneously, showing 
typically that for example if a sequence is generated by methods 
restricted to a certain complexity class then a successful prediction 
method cannot be restricted to the same class. 

Solomonoff’s theorem restricts consideration to sources x1x2 c 
with some computable probability distribution P. Over a finite 
alphabet S, let P 1x 2  denote the probability of the set of all infi-
nite sequences starting with x, further for a letter b of the alphabet 
denote P 1b|x 2 5 P 1xb 2 /P 1x 2 . The theorem says that the formula 
M 1b|x1 cxn 2 , gets closer and closer to the conditional probabil-
ity P 1b|x1 cxn 2  as n grows – closer for example in a mean square 
sense (and then also with P-probability 1). This is better than any 
classical predictive strategy can do. More explicitly, the value 

 Sn5 a
x:|x|5n21

a
b[S

P 1x 2 1M 1b|x 2 2 P 1b|x 2 2 2

is the expected error of the squared probability of the nth prediction 
if we use the universal M instead of the unknown P.  Solomonoff 
showed g`

n51Sn , `. (The bound is essentially the complexity 
K 1P 2 , of P, so it is relatively small for simple distributions P. There 
is no bound when P is not even computable.) Hence the expected 
squared error can be said to degrade faster then 1/n (provided the 
expectation is “smooth”). 

The set of all computable distributions is very wide. Consider for 
example a sequence x1x2 c whose even-numbered binary digits 
are those of p, while its odd-numbered digits are random. Solo-
monoff’s formula will converge to 1/2 on the odd-numbered dig-
its. On the even-numbered digits, it will get closer and closer to 1 
if b equals the corresponding digit of p, and to 0 if it does not. By 
now, several alternative theorems, and amplifications on this con-
vergence property have appeared: see for example [7,5]. 

The proof relies just on the fact that M 1x 2  dominates all comput-
able measures (even all lower semicomputable semimeasures). It 
generalizes therefore to any family of measures that has a dominat-
ing measure – in particular, to any countable family of measures. 

Despite the attractiveness of the formula, its incorporation of such 
a number of classical principles, and the nice form of the theorem, 
it is still susceptible to a justified criticism: the formula is in a dif-
ferent category from the sources that it predicts: those sources are 
computable, while the formula is not (M 1xy 2 /M 1x 2  is the ratio of 
two lower semicomputable functions). But as mentioned above, 
the restrictions on the source and on the predictor cannot be ex-
pected to be the same, and at least Solomonoff’s formula is brim-
ming with philosophical significance. 

The topic has spawned an elaborate theory of prediction in both stat-
ic and reactive unknown environments, based on universal distri-
butions with arbitrary loss bounds (rather than just the logarithmic 
loss) using extensions and variations of the proof method, inspir-
ing information theorists such as Thomas M. Cover [4]. An example 
is the book by Marcus Hutter [5]. A related direction on prediction 
and Kolmogorov complexity, using various loss bounds, going by 
the name of “predictive complexity”, in a time-limited setting, was 
introduced by Vladimir G. Vovk (see [26] and later works). 

We noted that Solomonoff normalized his universal apriori dis-
tributions, in order to turn them into regular probability distri-
butions. These normalizations make the theory less elegant since 
they take away the lower semicomputability property: however, 
Solomonoff never gave them up. And there is indeed no strong 
argument for the semicomputability of M 1x 2  in the context of 
prediction. In about 1992, Robert M. Solovay proved that every 
normalization of the universal a priori semimeasure to a measure 
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would change the relative probabilities of extensions by more than 
a constant (even incomputably large) factor. In a recent paper with 
a clever and appealing proof, Solomonoff [25] proved that if we 
predict a computable measure with a the universal a priori semi-
measure normalized according to his prescription, then the bad 
changes a la Solovay happen only with expectation going fast to 0 
with growing length of the predicted sequence. 

6. Universal Search

It was not until 1978, that Ray Solomonoff started to pay attention 
to the emerging field of computational complexity theory. In that 
year, Leonid Levin arrived in Boston, and they became friends. 
Levin had discovered NP problems around 1970, independently 
from Stephen Cook, and had shown the completeness of a small 
number of NP problems (independently of Richard Karp). For our 
present purpose, an NP problem is best viewed as a search problem. It 
is defined with the help of a verification predicate V 1x, w 2 , where x is 
the instance, w is a potential witness, and V 1x, w 2  is true if and only if 
the witness is accepted. We can assume that V 1x, w 2  is computable 
in time linear in the size |x| of the instance x (in an appropriate 
computation model, see later). The problem is to decide for a given 
instance x whether there is any witness w, and if yes, to find one. As 
an example, consider the problem of finding a description of length 
l that computes a given string x within time t on some fixed ma-
chine U. Let x5Ut 1p 2  mean that machine U computes x in time 
t from program p. The instance of the problem could be the string 
0l10t1x, and the verifier V 10l10t1x, p 2  would just check whether 
|p| # l and Ut 1p 2 5 x. 

Levin’s paper [6] announces also a theorem that has no counter-
part in the works of Cook and Karp: the existence of an algorithm 
that finds a witness to an NP-complete problem in time optimal to 
within a multiplicative constant. Theoretically, this result is quite 
interesting: from then on, one could say that the question has not 
been how to solve any NP problem efficiently, only what is the com-
plexity of Levin’s algorithm. If there is a theorem that it works in 
time g 1|x|2 , then of course also the problem of whether there is 
any witness at all becomes decidable in time g 1|x|2 . 

Levin’s paper gave no proof for this theorem (a proof can be found 
now, for example, in [7]). There is a natural, approximate idea of 
the proof, though. What is special about an NP problem is that 
once a potential witness is guessed, it is always possible to check 
it efficiently. Therefore it does not harm much (theoretically, that 
is as long as we are willing to tolerate multiplicative constants) a 
good solution algorithm A 1x 2  if we mix it with some other ones 
that just make wild guesses. Let r1, r2, c be any computable 
 sequence of positive numbers with g iri # 1. We could list all pos-
sible algorithms A1, A2, c, in some order, and run them simulta-
neously, making a step of algorithm Ai in a fraction ri of the time. 
At any time, if some algorithm Ai proposes a witness we check it. 
In this way, if any algorithm Ai finds witnesses in time g 1|x|2  then 
the universal algorithm finds it in time ri

21g 1|x|2 : this is what is 
meant by optimality within a multiplicative constant. 

In order to actually achieve the multiplicative constant in his 
theorem, Levin indicated that the machine model U has to be of 
a “random access” type: more precisely, of a type introduced by 
Kolmogorov and Uspensky and related to the “pointer machine” 
of Schönhage. He also introduced a variant of description com-
plexity Kt 1w 2 5mint, z:Ut1z25w|z|1 logt in which a penalty of size 

log t is built in for the running time t of the program z output-
ting the sequence w on the universal machine U. A more careful 
implementation of Levin’s algorithm (like the one given later by 
Solomonoff) tries the candidate witnesses w essentially as ordered 
by their complexity Kt 1w 2 . 

Up to now, Levin’s optimal algorithm has not received much at-
tention in the computational complexity literature. In its present 
form, it does not seem practical, since the multiplicative constant 
rz
21 is exponential in the length of the program z. (For time bounds 

provable in a reasonable sense, Hutter reduced the multiplicative 
constant to 5, but with a tremendous additive constant [7]. His 
optimal algorithm depends on the formal system in which the 
upper bounds are proved.) But Solomonoff appreciated it greatly, 
since in computing approximations to his apriori probability, this 
seems still the best that is available. He gave detailed implementa-
tions of the optimal search (giving probably the first written proof 
of Levin’s theorem), in its application to computing algorithmic 
probability [19,21]. These did not result in new theorems, but then 
Solomonoff had always been more interested in practical learning 
algorithms. In later projects (for example [22]) aimed at practical 
prediction, he defines as the conceptual jump size CJS of the pro-
gram z the quantity tz/pz, where pz is some approximation to the 
apriori probability of z, and tz is its running time. The logarithm 
of the conceptual jump size and Levin’s Kt 1w 2  are clearly related. 

7. Training Sequences

Solomonoff continued to believe in the existence of a learning al-
gorithm that one should find. He considered the approach used for 
example in practical speech recognition misguided: the algorithm 
there may have as many as 2000 tunable real number parameters. 
In the 1990s, he started a company to predict stock performance on 
a scientific basis provided by his theories. Eventually, he dropped 
the venture claiming that “convergence was not fast enough.” 

In a number of reports: [13, 15, 20, 22, 9, 24], universal search as 
described above is only a starting point for an array of approaches, 
that did not lead to new theorems, but were no less dear to Ray’s 
heart for that. What we called “program” above can alternatively 
be called a “problem solving technique”, or a “concept”. This part 
of Ray’s work was central for him; but the authors of the present 
article are closer to mathematics than to the experimental culture of 
artificial intelligence, therefore the evaluation poses challenges for 
them. We hope that the AI community will perform a less super-
ficial review of this part of the oevre than what we can offer here. 

Learning proceeds in stages, where each stage includes universal 
search. The conceptual jump size CJS introduced above (see [9]) 
continues to play a central role. Now, “probability” is used in the 
sense of the probability assigned by the best probabilistic model 
we can find in the available time for the given data. There is also 
an update process introducing more and more complex concepts. 
The concepts found useful on one stage are promoted to the status 
of primitives of a new language for the next stage, allowing to form 
more complex composite concepts (and goals). They are combined 
in various ways, assigning preliminarily just product probability 
to the composite concept. If a composite concept proves applicable 
with a probability beyond this initial value, it will be turned it into 
a new building block (with a corresponding larger probability). In 
this way, one hopes to alleviate the problem of excessively large 
multiplicative constants of universal search (see [21]). 
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Ray did not limit inductive inference to a model where a learner 
is presented a stream of experimental results. He realized that 
in practice, a lot of learning happens in a much more controlled 
situation, where there is a “teacher” (or several). Now, supervised 
learning is a well-studied set of models: in this, a teacher provides 
answers to some set of questions that the learner can ask. In Solo-
monoff’s model, the teacher also orders the questions in increasing 
conceptual jump size, facilitating thereby the above concept-build-
ing process. Already the report [13] sketches a system designed 
to recognize more and more complex patterns, as it is being fed 
a sequence of examples of gradually increasing complexity.1 Ray 
spent many years working out some examples in which a learn-
ing algorithm interacts with a training sequence. The examples 
were of the type of learning a simple language, mainly the lan-
guage of arithmetic expressions. By now, there are systems in AI 
experimenting with learning based on universal optimal search: 
see Schmidhuber in [12] and other works. 

We are not aware of any theoretical study that distinguishes the 
kind of knowledge that the teacher can transmit directly from the 
one that the student must relearn individually, and for which the 
teacher can only guide: order problems by complexity, and check 
the student answers. The teacher may indeed be in conscious pos-
session of a network of concepts and algorithms, along with es-
timates of their “conceptual jump size”, and we should assume 
that she communicates to the student directly everything she can. 
(The arithmetic algorithms, Ray’s main example, can certainly be 
fed into a machine without need for learning.) But it appears that 
in typical realistic learning, the directly, symbolically transferable 
material is only a very incomplete projection of the mental models 
that every pupil needs to build for himself. 

References

[1] Rudolf Carnap. Logical Foundations of Probability. University of 
Chicago Press, 1950. 

[2] Gregory J. Chaitin. On the length of programs for computing 
binary sequences, II. Journal of the ACM, 16:145–159, 1969. 

[3] Noam Chomsky. Three models for the description of language. 
IRE Trans. Inform. Theory, 2(3):113–124, September 1956. 

[4] Thomas M. Cover. Universal gambling schemes and the com-
plexity measures of Kolmogorov and Chaitin. In J. K. Skwirzynski, 
editor, The Impact of Processing Techniques on Communication, pages 
23–33. Martinus Nijhoff, 1985. Stanford University Statistics De-
partment Technical Report # 12, 1974. 

[5] Marcus Hutter. Universal Artificial Intelligence: Sequential Deci-
sions Based on Algorithmic Probability. Springer-Verlag, Berlin, 2005. 

[6] Leonid A. Levin. Universal sequential search problems. Problems 
of Inform. Transm., 9(3):255–256, 1973. 

[7] Ming Li and Paul M. B. Vitányi. Introduction to Kolmogorov Com-
plexity and its Applications (Third edition). Springer Verlag, New 
York, 2008. 

[8] Marvin L. Minsky. Problems of formulation for artificial intelli-
gence. In R. E. Bellman, editor, Proceedings of the Fourteenth Sympo-
sium in Applied Mathematics, pages 35–45, New York, 1962. Ameri-
can Mathematical Society. 

[9] Wolfgang Paul and Raymond J. Solomonoff. Autonomous theory 
building systems. In P. Bock, M. Loew, and M. Richter, editors, Neural 
Networks and Adaptive Learning, pages 1–13, Schloss Reisenburg, 1990. 

[10] Jorma J. Rissanen. A universal prior for integers and estimation 
by minimal description length. Annals of Statistics, 11(2):416–431, 1983. 

[11] Jorma J. Rissanen. Stochastic Complexity in Statistical Inquiry. 
World Scientific, London, U.K., 1989. 

[12] Jürgen Schmidhuber. Optimal ordered problem solver. 
 Machine Learning, 54:211–254, 2004. 

[13] Raymond J. Solomonoff. An inductive inference machine. In 
IRE Convention Record, Section on Information Theory, pages 56–62, 
New York, 1957. Author’s institution: Technical Research Group, 
New York 3, N.Y. 

[14] Raymond J. Solomonoff. A preliminary report on a general 
theory of inductive inference. Technical report, Zator Company, 
Cambridge, MA, 1960. 

[15] Raymond J. Solomonoff. Training sequences for mechanized 
induction. In M. Yovits, editor, Self-organizing systems, 1961. 

[16] Raymond J. Solomonoff. A formal theory of inductive infer-
ence I. Information and Control, 7:1–22, 1964. 

[17] Raymond J. Solomonoff. A formal theory of inductive infer-
ence II. Information and Control, 7:225–254, 1964. 

[18] Raymond J. Solomonoff. Complexity-based induction sys-
tems: Comparisons and convergence theorems. IEEE Transactions 
on Information Theory, IT-24(4):422–432, July 1978. 

[19] Raymond J. Solomonoff. Optimum sequential search. Techni-
cal report, Oxbridge Research, Cambridge, MA, 1984. 

[20] Raymond J. Solomonoff. Perfect training sequences and the 
costs of corruption – a progress report on inductive inference re-
search. Technical report, Oxbridge Research, Cambridge, MA, 1984. 

[21] Raymond J. Solomonoff. The application of algorithmic prob-
ability to problems in artificial intelligence. In L. N. Kanal and J. 
F. Lemmer, editors, Uncertainty in Artificial Intelligence, Advances 
in Cognitive Science, AAAS Selected Symposia, pages 473–491, 
North-Holland, 1986. Elsevier. 

[22] Raymond J. Solomonoff. A system for incremental learning 
based on algorithmic probability. In Proceedings of the Sixth Israeli 
Conference on Artificial Intelligence, Computer Vision and Pattern Rec-
ognition, pages 515–527, Tel Aviv, 1989. 

[23] Raymond J. Solomonoff. The discovery of algorithmic prob-
ability. Journal of Computer System Sciences, 55(1):73–88, 1997. 

[24] Raymond J. Solomonoff. Progress in incremental machine learn-
ing. Technical Report 03-16, IDSIA, Lugano, Switzerland, 2003. Re-
vision 2.0. Given at NIPS Workshop on Universal Learning Algo-
rithms and Optimal Search, Dec. 14, 2002, Whistler, B.C., Canada. 

[25] Raymond J. Solomonoff. The probability of “undefined” (non-
converging) output in generating the universal probability distri-
bution. Information Processing Letters, 106(6):238–246, 2008. 

[26] Vladimir G. Vovk. Prediction of stochastic sequences. Problems 
of Information Transmission, 25:285–296, 1989. 

[27] Alexander K. Zvonkin and Leonid A. Levin. The complexity 
of finite objects and the development of the concepts of informa-
tion and randomness by means of the theory of algorithms. Rus-
sian Math. Surveys, 25(6):83–124, 1970.

1 Marvin Minsky considers that the practical potential of the pattern recognition algo-
rithms in this work of Ray still has not received the attention it deserves.


